Dose selection, pharmacokinetics, and pharmacodynamics of BRAF inhibitor dabrafenib (GSK2118436).

نویسندگان

  • Gerald S Falchook
  • Georgina V Long
  • Razelle Kurzrock
  • Kevin B Kim
  • H-Tobias Arkenau
  • Michael P Brown
  • Omid Hamid
  • Jeffrey R Infante
  • Michael Millward
  • Anna Pavlick
  • Melvin T Chin
  • Steven J O'Day
  • Samuel C Blackman
  • C Martin Curtis
  • Peter Lebowitz
  • Bo Ma
  • Daniele Ouellet
  • Richard F Kefford
چکیده

PURPOSE Dabrafenib is a selective, potent ATP-competitive inhibitor of the BRAFV600-mutant kinase that has demonstrated efficacy in clinical trials. We report the rationale for dose selection in the first-in-human study of dabrafenib, including pharmacokinetics, tissue pharmacodynamics, 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) pharmacodynamics, and dose-response relationship. EXPERIMENTAL DESIGN Dabrafenib was administered orally once, twice (BID), or three times daily (TID). Selected dose cohorts were expanded to collect adequate data on safety, pharmacokinetics, or pharmacodynamics. A recommended phase II dose (RP2D) was chosen based on safety, pharmacokinetic, pharmacodynamic, and response data. RESULTS One hundred and eighty-four patients were enrolled and treated with doses ranging from 12 mg once daily to 300 mg BID in 10 cohorts. Pharmacokinetic assessment of dabrafenib demonstrated a less-than-dose-proportional increase in exposure after repeat dosing above 150 mg BID. Similar to parent drug concentrations, exposure for all metabolites demonstrated less-than-dose-proportional increases. Predicted target inhibition of pERK (>80%) was achieved at 150 mg BID, with a similar magnitude of inhibition at higher doses in BRAFV600 mutation melanoma biopsy samples. Although there was large variability between patients, FDG uptake decreased with higher daily doses in patients with BRAFV600 mutation-positive melanoma. A favorable activity and tolerability profile was demonstrated at 150 mg BID. There was no improvement with TID dosing compared with BID dosing, based on FDG-PET and tumor response analyses in patients with melanoma. CONCLUSION The RP2D of dabrafenib was determined to be 150 mg BID after considering multiple factors, including pharmacokinetics, tissue pharmacodynamics, FDG-PET pharmacodynamics, and the dose-response relationship. A maximum tolerated dose for dabrafenib was not determined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preclinical Development Combinations of BRAF, MEK, and PI3K/mTOR Inhibitors Overcome Acquired Resistance to the BRAF Inhibitor GSK2118436 Dabrafenib, Mediated by NRAS or MEK Mutations

Recent results from clinical trials with the BRAF inhibitors GSK2118436 (dabrafenib) and PLX4032 (vemurafenib) have shown encouraging response rates; however, the duration of response has been limited. To identify determinants of acquired resistance to GSK2118436 and strategies to overcome the resistance, we isolated GSK2118436 drug-resistant clones from the A375 BRAF and the YUSIT1 BRAF melano...

متن کامل

Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations.

Recent results from clinical trials with the BRAF inhibitors GSK2118436 (dabrafenib) and PLX4032 (vemurafenib) have shown encouraging response rates; however, the duration of response has been limited. To identify determinants of acquired resistance to GSK2118436 and strategies to overcome the resistance, we isolated GSK2118436 drug-resistant clones from the A375 BRAF(V600E) and the YUSIT1 BRAF...

متن کامل

BRAF Mutant Gastrointestinal Stromal Tumor: First report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance

Activating oncogenic mutations of BRAF have been described in patients with gastrointestinal stromal tumor (GIST), but treatment of GIST with BRAF inhibitors and mechanisms of mediating the emergence of resistance in GIST have not been reported. Dabrafenib is a potent ATP-competitive inhibitor of BRAF kinase and is highly selective for mutant BRAF in kinase panel screening, cell lines, and xeno...

متن کامل

Dabrafenib and its potential for the treatment of metastatic melanoma

The purpose of this study is to review the development of BRAF inhibitors, with emphasis on the trials conducted with dabrafenib (GSK2118436) and the evolving role of dabrafenib in treatment for melanoma patients. Fifty percent of cutaneous melanomas have mutations in BRAF, resulting in elevated activity of the mitogen-activated protein kinase signaling pathway. Dabrafenib inhibits the mutant B...

متن کامل

Dabrafenib; Preclinical Characterization, Increased Efficacy when Combined with Trametinib, while BRAF/MEK Tool Combination Reduced Skin Lesions

Mitogen-Activated Protein Kinase (MAPK) pathway activation has been implicated in many types of human cancer. BRAF mutations that constitutively activate MAPK signalling and bypass the need for upstream stimuli occur with high prevalence in melanoma, colorectal carcinoma, ovarian cancer, papillary thyroid carcinoma, and cholangiocarcinoma. In this report we characterize the novel, potent, and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 20 17  شماره 

صفحات  -

تاریخ انتشار 2014